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1 Sufficient Conditions for Exact Recovery in Sparse Lin-
ear Regression and Introduction to Noisy, Sparse Linear
Regression

1.1 Recap: sparse linear regression via the restricted nullspace condition

Our model is a the high dimensional sparse linear model, y = Xθ∗ ∈ Rn, where X ∈ Rn×d,
θ∗ ∈ Rd and the support of θ∗ has cardinality |S(θ∗)| ≤ s. Given (y,X), we want to recover
θ∗. When d > n, we want

θ̂ := arg min
y=Xθ

‖θ‖1.

When can we have exact recovery? Last time, we had the following condition.

Definition 1.1 (Restricted nullspace). Let S ⊆ [d]. X ∈ Rn×d satisfies RN(S) if C(S) ∩
Null(X) = {0}, where

C(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1}.

Theorem 1.1. The following are equivalent:

1. For all θ∗ ∈ Rd with S(θ∗) = S,

arg min
θ
{‖θ‖1 : Xθ∗ = Xθ} = θ∗}.

2. X satisfies RN(S), i.e. Null(X) capC(S) = {0}.

However, it is hard to verify the restricted nullspace property for a matrix, since we
need to check all subsets of [d] of cardinality s. How can we find examples of matrices
satisfying this property?
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1.2 Two sufficient conditions for the restricted nullspace property

The intuition is that if d < n (which is not the case we want to solve), X is full-rank, so
we can take X>X/n = Id. This implies that Null(X) = {0} because

‖Xv‖22/n = v>(X>X/n)v = v>Idv = ‖v‖22.

Since C(S) is basically {θ : S(θ) = S}, we can restrict to S. So as long as we have
(X>X)s,s/n = IS , if v ∈ {θ : S(θ) = s} ∩Null(X), we can say

v>(X>X/n)v = v>s (X>X/n)s,svs = ‖vs‖22.

This equals 0, so we get vS = 0; i.e. v = 0.
This motivates the following definitions.

Definition 1.2. Let Γ = X>X/n− Id. The pairwise incorherence1 is

δPW(X) = max
i,j
|Γi,j | = max

i,j
|(X>X/n− Id)i,j |.

The restricted isometry constant2 is

δs(X) = max
|S|≤s

‖ΓS,S‖op = max
|S|≤s

‖X>S XS/n− IS‖op,

where XS ∈ Rn×s is the matrix where we only keep the columns in S.

Note that δd = ‖Γ‖op.

1.2.1 The pairwise incoherence condition

Proposition 1.1 (Incoherence implies RN(S)). If δPW(X) ≤ 1
3s , then X satisfies RN(S)

for any |S| ≤ s.

Proof. Assume that δPW(X) ≤ 1
3s , and take any θ ∈ Null(X) \ {0}; we want to show that

θ /∈ C(S). Let S ⊆ [d] with |S| ≤ s. That is, our goal is to show that ‖θSc‖1 > ‖θS‖1. The
nullspace condition gives

0 = ‖Xθ‖22
We now want to decompose this into θS and θSc so these two quantities appear. Writing
θS ∈ Rd,

= ‖X(θSc + θS)‖22
1The pairwise incorherence was introduced in 2001 by Donoho and Huo.
2The restricted isometry constant was introduced by Candès and Tao in 2005
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= θ>SX
>
S XSθS + 2θScX>ScXSθS + ‖XScθSc‖22︸ ︷︷ ︸

≥0

.

This implies that

θ>SX
>
S XSθS ≤ 2|θ>ScX>ScXSθS |.

We can normalize by n to get

θ>S (X>S XS/n)θS ≤ 2|θ>Sc(X>ScXS/n)θS |.

The left hand side is

θ>S (X>S XS/n)θS ≥ λmin(X>S XS/n)‖θS‖22
Using the fact that ‖θ‖21 ≤ ‖θ‖0‖θ22, we get the lower bound

≥ λmin(X>S XS/n)‖θS‖21/s.

To upper bound the right hand side, we use the fact that a>Ab ≤ ‖a‖1‖Ab‖∞ ≤ ‖a‖1‖A‖max‖b‖1.
Then

2|θ>Sc(X>ScXS/n)θS | ≤ ‖θS‖1‖θSc‖1‖X>ScXS/n‖max/

Putting these inequalities together gives

‖θSc‖1
‖θS‖1

≥ λmin(X>s Xs/n)

2s‖X>ScXS/n‖max
.

So far, we have not used the pairwise incoherence. We claim that the pairwise inco-
herence condition δPW(X) < 1

3s makes the right hand side > 1. The key is to observe
that ‖X>ScXS/n‖max ≤ δPW(X) and that λmin(X>s Xs/n) ≥ 2/3 if the pairwise incoherence
condition is satisfied.

1.2.2 The restricted isometry property

Here is another condition that implies the restricted nullspace property.

Proposition 1.2 (Restricted isometry property implies RN(S)). If δ2s(X) ≤ 1/3, then X
satisfies RN(S) for any |S| ≤ s.

This is proposition 7.11 in Wainwright’s textbook, and we will not provide the proof
here.

Remark 1.1. In general, we have the algebraic inequality

δPW(X) ≤ δS(X) ≤ sδPW(X).
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The pairwise incoherence is computable in polynomial time, while the weaker RIP
condition needs time

∑s
k=1

(
d
k

)
. Here is an exercise which shows that we can satisfy these

conditions randomly.

Proposition 1.3. Let X ∈ Rn×d and Xi,j
iid∼ N(0, 1). Then

(a) If n & s2 log d, then δPW(X) ≤ 1
3s with high probability.

(b) If n & s log( eds ), then δ2s(X) ≤ 1
3 with high probability.

Here is the idea of the proof.

Proof.

(a) Write

δPW = max
i,j
|(X>X/n− Id)i,j |

= max
i,j

∣∣∣∣∣ 1n
n∑
k=1

xi,kxj,k − δi,j

∣∣∣∣∣
Note that E[ 1n

∑n
i=kXi,kXj,k] = δi,j , so Ii,j = 1

n

∑n
i=kXi,kXj,k]−δi,j will be sE( 1√

n
1
n)

for fixed i, j. Then Bernstein’s inequality gives

P(|Ii,j | ≥ t) ≤ 2 exp(−cnmin(t, t2)).

Using a union bound, we get

P
(

max
i,j
|Ii,j | ≥ t

)
≤ 2d2 exp(−cnmin(t, t2)).

Now, if we let t = 1
3s , call the right hand side δ, and solve for n, we get the condition

n & s2 log(d.δ).

(b) The proof is similar, using the matrix version of concentration.

Remark 1.2. Certain random matrix distributions will satisfy RN(S) but not the RIP

or coherence. For example, we will show later that if Xi
iid∼ N(0,Σ), where Σ = (1 −

µ)Id + µ11>, then X still satisfies RN(S) with high probability. Here is a figure from
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Wainwright’s textbook:

Here, there is a phase transition threshold which needs to be identified with an asymptotic
analysis that we will not cover.

1.3 Estimation in the noisy setting

Now we will change our model to y = Xθ∗ + w ∈ Rn, where

w =

w1

...
wn

 ∈ Rn, X ∈ Rn×d, X =

x
>
1
...
x>n

 , θ∗ =

θ
∗
1
...
θ∗n

 .
We assume the sparsity condition |S(θ∗)| ≤ s. Given (y,X), we want to estimate θ∗. This
time, we want to minimize ‖θ‖1 subject to the constraint that ‖y −Xθ‖ ≤ b2.

Here are three equivalent formulations of the LASSO problem, which we use for our
estimation:
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1. The λ formulation:

θ̂ = arg min
θ∈Rd

{
1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
,

2. 1-norm constrained formulation:

arg min
θ

{
1

2n
‖y −Xθ‖22

}
s.t. ‖θ‖1 ≤ R

3. The error constrained formulation:

arg min
θ
{‖θ‖1} s.t.

1

2n
‖y −Xθ‖22 ≤ b2.

These are equivalent in the sense that for all λn > 0, there is an R < ∞ such that
the solution fo the 1-norm constrained formulation with parameter R is a solution of the
λ formulation. Similarly, we can go the other way. This equivalence requires a condition
on X and is just convex duality.

How can we bound the estimation error? We will discuss this next time.
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